EconPapers    
Economics at your fingertips  
 

On regularity of weak solutions for the Navier–Stokes equations in general domains

V. T. T. Duong, D. Q. Khai and N. M. Tri

Mathematische Nachrichten, 2021, vol. 294, issue 12, 2302-2316

Abstract: Let u be a weak solution of the instationary Navier–Stokes equations in a completely general domain Ω⊆R3$\Omega \subseteq \mathbb {R}^3$ which additionally satisfies the strong energy inequality. Firstly, we prove that u is regular if the kinetic energy 12∥u(t)∥22$\frac{1}{2}\big \Vert u(t)\big \Vert _2^2$ is left‐side Hölder continuous with Hölder exponent 12$\frac{1}{2}$ and with a sufficiently small Hölder seminorm. This result extends the previous ones by several authors [5, 6, 7, 8] in which the domain Ω is additionally supposed to be bounded or have the uniform C2‐boundary ∂Ω$\partial \Omega$. Secondly, we show that if u(t)∈D(A14)$u(t) \in \mathbb {D}\Big(A^\frac{1}{4}\Big)$ and limδ→0+∥A14(u(t−δ)−u(t))∥2

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900407

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:12:p:2302-2316

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:294:y:2021:i:12:p:2302-2316