Boundedness of fractional integral operators on Musielak–Orlicz Hardy spaces
Duong Quoc Huy and
Luong Dang Ky
Mathematische Nachrichten, 2021, vol. 294, issue 12, 2340-2354
Abstract:
Let α∈(0,n)$\alpha \in (0,n)$ and let φ1,φ2:Rn×[0,∞)→[0,∞)$\varphi _1,\varphi _2:\mathbb {R}^n\times [0,\infty )\rightarrow [0,\infty )$ be Musielak–Orlicz functions such that φ1(x,·)$\varphi _1(x,\cdot )$, φ2(x,·)$\varphi _2(x,\cdot )$ are Orlicz functions and φ1(·,t)$\varphi _1(\cdot ,t)$, φ2(·,t)$\varphi _2(\cdot ,t)$ are Muckenhoupt A∞(Rn)$A_\infty (\mathbb {R}^n)$ weights. In this paper, we give the necessary and sufficient condition for the boundedness of the fractional integral operator Iα$I_\alpha$ from the Musielak–Orlicz Hardy space Hφ1(Rn)$H^{\varphi _1}(\mathbb {R}^n)$ into the Musielak–Orlicz Hardy space Hφ2(Rn)$H^{\varphi _2}(\mathbb {R}^n)$. We also give the necessary and sufficient condition for the boundedness of Iα$I_\alpha$ from Hφ1(Rn)$H^{\varphi _1}(\mathbb {R}^n)$ into the Musielak–Orlicz space Lφ2(Rn)$L^{\varphi _2}(\mathbb {R}^n)$. Our results generalize the main results in [5, 20, 21].
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900392
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:12:p:2340-2354
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().