EconPapers    
Economics at your fingertips  
 

Multiplicity of positive solutions for singular elliptic problems

Aleksandra Orpel

Mathematische Nachrichten, 2021, vol. 294, issue 12, 2396-2412

Abstract: We consider the following nonlinear singular elliptic equation Δu(x)+f(x,u(x))−b(x)(u(x))−α∥∇u(x)∥β+g(x)x·∇u(x)=0inΩ,\begin{equation*}\hskip7pc \Delta u(x)+f(x,u(x))-b(x)(u(x))^{-\alpha }\Vert \nabla u(x)\Vert ^{\beta }+ g(x)x\cdot \nabla u(x)=0 \ \ \text{in} \ \ \Omega ,\hskip-7pc \end{equation*}where n>2$n>2$, Ω:={x∈Rn;∥x∥>R}$\Omega :=\lbrace x\in \mathbb {R}^{n};\,\Vert x\Vert >R \rbrace$. Our main purpose is to prove the existence of a large number of positive solutions with the asymptotic decay u(x)=O(∥x∥2−n)$u(x)=O\big (\Vert x\Vert ^{2-n}\big )$ as ∥x∥→∞$\Vert x\Vert \rightarrow \infty$. We also investigate the rate of decay of ∇u$\nabla u$. These results are based on the sub and supersolution method and cover both sublinear and superlinear cases of f.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900394

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:12:p:2396-2412

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:294:y:2021:i:12:p:2396-2412