EconPapers    
Economics at your fingertips  
 

Deficient topological measures on locally compact spaces

S. V. Butler

Mathematische Nachrichten, 2021, vol. 294, issue 6, 1115-1133

Abstract: Topological measures and quasi‐linear functionals generalize measures and linear functionals. We define and study deficient topological measures on locally compact spaces. A deficient topological measure on a locally compact space is a set function on open and closed sets which is finitely additive on compact sets, inner regular on open sets, and outer regular on closed sets. Deficient topological measures generalize measures and topological measures. First we investigate positive, negative, and total variation of a signed set function that is only assumed to be finitely additive on compact sets. These positive, negative, and total variations turn out to be deficient topological measures. Then we examine finite additivity, superadditivity, smoothness, and other properties of deficient topological measures. We obtain methods for generating new deficient topological measures. We provide necessary and sufficient conditions for a deficient topological measure to be a topological measure and to be a measure. The results presented are necessary for further study of topological measures, deficient topological measures, and corresponding non‐linear functionals on locally compact spaces.

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/mana.201800574

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:6:p:1115-1133

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:294:y:2021:i:6:p:1115-1133