Riemann problem for a two‐dimensional steady pressureless relativistic Euler equations
Yu Zhang and
Yanyan Zhang
Mathematische Nachrichten, 2021, vol. 294, issue 6, 1206-1229
Abstract:
We consider the Riemann problem for a two‐dimensional steady pressureless relativistic Euler equations. The delta shock wave is discovered in the Riemann solutions. It is shown that Dirac delta function develops in the state variable describing the number density of particles. By virtue of a suitable generalized Rankine–Hugoniot relation and entropy condition, we establish the existence and uniqueness for delta‐shock solution. Furthermore, we analyze in detail the interactions of delta shock waves and vacuum states.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900313
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:6:p:1206-1229
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().