EconPapers    
Economics at your fingertips  
 

Sharp bounds for eigenvalues of biharmonic operators with complex potentials in low dimensions

Orif O. Ibrogimov, David Krejčiřík and Ari Laptev

Mathematische Nachrichten, 2021, vol. 294, issue 7, 1333-1349

Abstract: We derive sharp quantitative bounds for eigenvalues of biharmonic operators perturbed by complex‐valued potentials in dimensions one, two and three.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000196

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:294:y:2021:i:7:p:1333-1349

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:294:y:2021:i:7:p:1333-1349