EconPapers    
Economics at your fingertips  
 

Betti numbers of stable map spaces to Grassmannians

Massimo Bagnarol

Mathematische Nachrichten, 2022, vol. 295, issue 10, 1869-1900

Abstract: Let M¯0,n(G(r,V),d)$\overline{M}_{0,n}(G(r,V), d)$ be the coarse moduli space of stable degree d maps from n‐pointed genus 0 curves to a Grassmann variety G(r,V)$G(r,V)$. We provide a recursive method for the computation of the Hodge numbers and the Betti numbers of M¯0,n(G(r,V),d)$\overline{M}_{0,n}(G(r,V), d)$ for all n and d. Our method is a generalization of Getzler and Pandharipande's work for maps to projective spaces.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000051

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:10:p:1869-1900

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:10:p:1869-1900