Properties of the support of solutions of a class of nonlinear evolution equations
Eddye Bustamante and
José Jiménez Urrea
Mathematische Nachrichten, 2022, vol. 295, issue 12, 2357-2372
Abstract:
In this work we consider equations of the form ∂tu+P(∂x)u+G(u,∂xu,⋯,∂xlu)=0,$$\begin{equation*}\hskip7pc \partial _t u+P\big (\partial _x\big ) u+G\big (u,\partial _xu,\dots ,\partial _x^l u\big )=0, \end{equation*}$$where P is any polynomial without constant term, and G is any polynomial without constant or linear terms. We prove that if u is a sufficiently smooth solution of the equation, such that suppu(0),suppu(T)⊂(−∞,B]$\operatorname{supp}u(0),\operatorname{supp}u(T)\subset { (-\infty ,B ]}$ for some B>0$B>0$, then there exists R0>0$R_0>0$ such that suppu(t)⊂(−∞,R0]$\operatorname{supp}u(t)\subset (-\infty ,R_0]$ for every t∈[0,T]$t\in [0,T]$. Then, as an example of the application of this result, we employ it to show a unique continuation principle for the Kawahara equation, ∂tu+∂x5u+∂x3u+u∂xu=0,$$\begin{equation*}\hskip9pc \partial _t u+\partial _x^5 u+\partial _x^3 u+u\partial _x u=0, \end{equation*}$$and for the generalized KdV hierarchy ∂tu+(−1)k+1∂x2k+1u+G(u,∂xu,⋯,∂x2ku)=0.$$\begin{equation*}\hskip6pc \partial _t u+ (-1)^{k+1}\partial _x^{2k+1} u+G\big (u,\partial _x u,\dots , \partial _x^{2k}u\big ) =0. \end{equation*}$$
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000354
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:12:p:2357-2372
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().