EconPapers    
Economics at your fingertips  
 

Properties of the support of solutions of a class of nonlinear evolution equations

Eddye Bustamante and José Jiménez Urrea

Mathematische Nachrichten, 2022, vol. 295, issue 12, 2357-2372

Abstract: In this work we consider equations of the form ∂tu+P(∂x)u+G(u,∂xu,⋯,∂xlu)=0,$$\begin{equation*}\hskip7pc \partial _t u+P\big (\partial _x\big ) u+G\big (u,\partial _xu,\dots ,\partial _x^l u\big )=0, \end{equation*}$$where P is any polynomial without constant term, and G is any polynomial without constant or linear terms. We prove that if u is a sufficiently smooth solution of the equation, such that suppu(0),suppu(T)⊂(−∞,B]$\operatorname{supp}u(0),\operatorname{supp}u(T)\subset { (-\infty ,B ]}$ for some B>0$B>0$, then there exists R0>0$R_0>0$ such that suppu(t)⊂(−∞,R0]$\operatorname{supp}u(t)\subset (-\infty ,R_0]$ for every t∈[0,T]$t\in [0,T]$. Then, as an example of the application of this result, we employ it to show a unique continuation principle for the Kawahara equation, ∂tu+∂x5u+∂x3u+u∂xu=0,$$\begin{equation*}\hskip9pc \partial _t u+\partial _x^5 u+\partial _x^3 u+u\partial _x u=0, \end{equation*}$$and for the generalized KdV hierarchy ∂tu+(−1)k+1∂x2k+1u+G(u,∂xu,⋯,∂x2ku)=0.$$\begin{equation*}\hskip6pc \partial _t u+ (-1)^{k+1}\partial _x^{2k+1} u+G\big (u,\partial _x u,\dots , \partial _x^{2k}u\big ) =0. \end{equation*}$$

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000354

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:12:p:2357-2372

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:12:p:2357-2372