EconPapers    
Economics at your fingertips  
 

Radial solutions for p‐Laplacian Neumann problems with gradient dependence

Minghe Pei, Libo Wang and Xuezhe Lv

Mathematische Nachrichten, 2022, vol. 295, issue 12, 2422-2435

Abstract: We study the radial solutions of the p‐Laplacian Neumann problem with gradient dependence of the type −Δpu=f(|x|,u,|∇u|)inΩ,∂u∂n=0on∂Ω,$$\begin{equation*} {\hspace*{8pc}\left\lbrace \def\eqcellsep{&}\begin{array}{l}-\Delta _{p}u=f(|x|,u,|\nabla u|)\quad \textrm {in} \nobreakspace \Omega ,\\[3pt] \displaystyle \frac{\partial u}{\partial {\bf n}}=0\quad \textrm {on}\nobreakspace \partial \Omega , \end{array} \right.} \end{equation*}$$where Ω⊂RN(N≥2)$\Omega \subset \mathbb {R}^N(N\ge 2)$ is either a ball or an annulus, and p>1$p>1$. By using the topological transversality method together with the barrier strip technique, we obtain existence results of radial solutions to the above problem, where the nonlinearity f does not need to satisfy any growth restriction.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000107

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:12:p:2422-2435

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:12:p:2422-2435