Radial solutions for p‐Laplacian Neumann problems with gradient dependence
Minghe Pei,
Libo Wang and
Xuezhe Lv
Mathematische Nachrichten, 2022, vol. 295, issue 12, 2422-2435
Abstract:
We study the radial solutions of the p‐Laplacian Neumann problem with gradient dependence of the type −Δpu=f(|x|,u,|∇u|)inΩ,∂u∂n=0on∂Ω,$$\begin{equation*} {\hspace*{8pc}\left\lbrace \def\eqcellsep{&}\begin{array}{l}-\Delta _{p}u=f(|x|,u,|\nabla u|)\quad \textrm {in} \nobreakspace \Omega ,\\[3pt] \displaystyle \frac{\partial u}{\partial {\bf n}}=0\quad \textrm {on}\nobreakspace \partial \Omega , \end{array} \right.} \end{equation*}$$where Ω⊂RN(N≥2)$\Omega \subset \mathbb {R}^N(N\ge 2)$ is either a ball or an annulus, and p>1$p>1$. By using the topological transversality method together with the barrier strip technique, we obtain existence results of radial solutions to the above problem, where the nonlinearity f does not need to satisfy any growth restriction.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000107
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:12:p:2422-2435
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().