Existence of solution of some p,q${p,q}$‐Laplacian system under local superlinear conditions
Patricio Cerda,
Marco Souto and
Pedro Ubilla
Mathematische Nachrichten, 2022, vol. 295, issue 1, 44-57
Abstract:
We study existence of positive radial solutions for the following class of quasi‐linear elliptic systems −Δpu=f(|x|,u,v)inB,−Δqv=g(|x|,u,v)inB,(u,v)=(0,0)on∂B,\begin{equation*}\hspace*{13.5pc} \left\lbrace \def\eqcellsep{&}\begin{array}{rcll} -\Delta _p u &=& f(|x|,u,v) & \text{in}\quad B, \\ -\Delta _q v &=& g(|x|,u,v) & \text{in}\quad B, \\ (u,v) &=& (0,0) & \text{on}\quad \partial B, \end{array} \right. \end{equation*}where the nonlinearities f,g∈C(B×[0,+∞)2;[0,+∞))$ f, g \in C\big (B \times [0,+\infty )^2;\,[0,+\infty )\big )$ satisfy some local superlinear property at +∞$+\infty$. Here B is the unity ball in RN${\mathbb {R}}^N$ and 1
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900424
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:1:p:44-57
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().