EconPapers    
Economics at your fingertips  
 

Multiple solutions for p(x)${p(x)}$‐curl systems with nonlinear boundary condition

Bin Ge and Jian‐Fang Lu

Mathematische Nachrichten, 2022, vol. 295, issue 3, 512-535

Abstract: In this paper, we study the p(x)$p(x)$‐curl problem of the type: ∇×(|∇×u|p(x)−2∇×u)+a(x)|u|p(x)−2u=λf(x,u),inΩ,∇·u=0,inΩ,|∇×u|p(x)−2∇×u×n=0,u·n=0,on∂Ω,\begin{equation*} \hspace*{13pc}{\left\lbrace \def\eqcellsep{&}\begin{array}{ll}\nabla \times \big (|\nabla \times \mathbf {u} |^{p(x)-2}\nabla \times \mathbf {u}\big )+a(x)|\mathbf {u}|^{p(x)-2}\mathbf {u} =\lambda \mathbf {f}(x,\mathbf {u}), &{\rm in}\; \Omega , \\ [0.1cm] \nabla \cdot \mathbf {u}=0,\;&{\rm in}\; \Omega , \\ [0.1cm] |\nabla \times \mathbf {u}|^{p(x)-2}\nabla \times \mathbf {u} \times \mathbf {n}=0,\mathbf {u}\cdot \mathbf {n}=0, \; &\text{on} \; \partial \Omega , \end{array} \right.} \end{equation*}where Ω⊂R3$\Omega \subset \mathbb {R}^{3}$ is a bounded simply connected domain with a C1, 1 boundary denoted by ∂Ω$\partial \Omega$, λ>0$\lambda >0$, p(x):Ω¯→(1,+∞)$p(x):\overline{\Omega }\rightarrow (1,+\infty )$ is a continuous function, a(x)∈L∞(Ω)$a(x)\in L^{\infty }(\Omega )$, and f:Ω¯×R3→R3$\mathbf {f}:\overline{\Omega }\times \mathbb {R}^{3}\rightarrow \mathbb {R}^{3}$ is a Carathéodory function. We obtain the existence and multiplicity of solutions for a class of p(x)$p(x)$‐curl systems in the absence of Ambrosetti–Rabinowitz condition under superlinear case. Besides, we also obtain infinitely many solutions under sublinear case.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900236

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:3:p:512-535

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:3:p:512-535