EconPapers    
Economics at your fingertips  
 

K‐theory of regular compactification bundles

V. Uma

Mathematische Nachrichten, 2022, vol. 295, issue 5, 1013-1034

Abstract: Let G be a split connected reductive algebraic group. Let E⟶B$\mathcal {E}\longrightarrow \mathcal {B}$ be a G×G$G\times G$‐torsor over a smooth base scheme B$\mathcal {B}$ and X be a regular compactification of G. We describe the Grothendieck ring of the associated fibre bundle E(X):=E×G×GX$\mathcal {E}(X):=\mathcal {E}\times _{G\times G} X$, as an algebra over the Grothendieck ring of a canonical toric bundle over a flag bundle over B$\mathcal {B}$. These are relative versions of the corresponding results on the Grothendieck ring of X in the case when B$\mathcal {B}$ is a point, and generalize the classical results on the Grothendieck rings of projective bundles, toric bundles and flag bundles.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900323

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:5:p:1013-1034

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:5:p:1013-1034