EconPapers    
Economics at your fingertips  
 

Framed motivic Donaldson–Thomas invariants of small crepant resolutions

Alberto Cazzaniga and Andrea T. Ricolfi

Mathematische Nachrichten, 2022, vol. 295, issue 6, 1096-1112

Abstract: For an arbitrary integer r≥1$r\ge 1$, we compute r‐framed motivic DT and PT invariants of small crepant resolutions of toric Calabi–Yau 3‐folds, establishing a “higher rank” version of the motivic DT/PT wall‐crossing formula. This generalises the work of Morrison and Nagao. Our formulae, in particular their relationship with the r=1$r=1$ theory, fit nicely in the current development of higher rank refined DT invariants.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100068

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:6:p:1096-1112

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:6:p:1096-1112