EconPapers    
Economics at your fingertips  
 

Spectral optimization for Robin Laplacian on domains admitting parallel coordinates

Pavel Exner and Vladimir Lotoreichik

Mathematische Nachrichten, 2022, vol. 295, issue 6, 1163-1173

Abstract: In this paper we deal with spectral optimization for the Robin Laplacian on a family of planar domains admitting parallel coordinates, namely a fixed‐width strip built over a smooth closed curve and the exterior of a convex set with a smooth boundary. We show that if the curve length is kept fixed, the first eigenvalue referring to the fixed‐width strip is for any value of the Robin parameter maximized by a circular annulus. Furthermore, we prove that the second eigenvalue in the exterior of a convex domain Ω corresponding to a negative Robin parameter does not exceed the analogous quantity for the exterior of a disk whose boundary has a curvature larger than or equal to the maximum of that for ∂Ω$\partial \Omega$.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000013

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:6:p:1163-1173

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:6:p:1163-1173