EconPapers    
Economics at your fingertips  
 

The exponent of the non‐abelian tensor square and related constructions of p‐groups

Raimundo Bastos, Emerson de Melo, Nathália Gonçalves and Carmine Monetta

Mathematische Nachrichten, 2022, vol. 295, issue 7, 1264-1278

Abstract: Let G be a finite p‐group. In this paper we obtain bounds for the exponent of the non‐abelian tensor square G⊗G$G \otimes G$ and a certain extension ν(G)$\nu (G)$ of G⊗G$G \otimes G$ by G×G$G \times G$. In particular, we bound exp(ν(G))$\exp (\nu (G))$ in terms of exp(ν(G/N))$\exp (\nu (G/N))$ and exp(N)$\exp (N)$ when G admits some specific normal subgroup N. We also establish bounds for exp(G⊗G)$\exp (G \otimes G)$ in terms of exp(G)$\exp (G)$ and either the nilpotency class or the coclass of the group G, improving some existing bounds.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000218

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:7:p:1264-1278

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:7:p:1264-1278