EconPapers    
Economics at your fingertips  
 

Extended best polynomial approximation operator in Orlicz–Lorentz spaces

David Eduardo Ferreyra, María Inés Gareis and Fabián Eduardo Levis

Mathematische Nachrichten, 2022, vol. 295, issue 7, 1292-1311

Abstract: In this article, we consider the best polynomial approximation operator defined on an Orlicz–Lorentz space Λw,ϕ$\Lambda _{w,\phi }$ generated by an Orlicz function ϕ and a non‐negative continuous weight function w. Then we extend the best polynomial approximation operator from Λw,ϕ$\Lambda _{w,\phi }$ to Λw,ϕ′$\Lambda _{w,\phi ^{\prime }}$, where ϕ′$\phi ^{\prime }$ is the derivative function of ϕ. In addition, we establish some properties of the extended best polynomial approximation operator.

Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/mana.201900373

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:7:p:1292-1311

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:7:p:1292-1311