On a degenerate singular elliptic problem
Prashanta Garain
Mathematische Nachrichten, 2022, vol. 295, issue 7, 1354-1377
Abstract:
In this article we provide existence, uniqueness and regularity results of a degenerate singular elliptic boundary value problem whose prototype is given by −div(w(x)|∇u|p−2∇u)=f(x)uδinΩ,u>0inΩ,u=0on∂Ω,\begin{equation*}\hskip7pc \left\{ \def\eqcellsep{&}\begin{array}{l} -{\operatorname{div}}\big (w(x)|\nabla u|^{p-2}\nabla u\big )=\dfrac{f(x)}{u^\delta }\,\,\text{ in }\,\,\Omega ,\\[0pt] u>0\text{ in }\Omega ,\\ u = 0 \text{ on } \partial \Omega , \end{array} \right.\hskip-7pc \end{equation*}where Ω is a bounded smooth domain in RN$\mathbb {R}^N$ with N≥2$N\ge 2$, w belongs to the Muckenhoupt class Ap$A_p$ for some 1 0$\delta >0$.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900431
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:7:p:1354-1377
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().