Standard homogeneous (α1,α2)${\big(\alpha _1,\alpha _2\big)}$‐metrics and geodesic orbit property
Lei Zhang and
Ming Xu
Mathematische Nachrichten, 2022, vol. 295, issue 7, 1443-1453
Abstract:
In this paper, we introduce the notion of standard homogeneous (α1,α2)$\big (\alpha _1,\alpha _2\big )$‐metric, as a generalization for the normal homogeneity in Finsler geometry with relatively good computability. We explore the geodesic orbit (g.o. in short) property of this metric. Especially, when it is associated with a triple of compact Lie groups, we find new examples of g.o. Finsler spaces from H. Tamaru's classification list. Meanwhile, we prove that all standard g.o. (α1,α2)$\big (\alpha _1,\alpha _2\big )$‐metrics on the Wallach spaces, W6=SU(3)/T2$W^6=SU(3)/T^2$, W12=Sp(3)/Sp(1)3$W^{12}=Sp(3)/Sp(1)^3$ and W24=F4/Spin(8)$W^{24}=F_4/Spin(8)$, must be the normal homogeneous Riemannian metrics.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.201900536
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:7:p:1443-1453
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().