EconPapers    
Economics at your fingertips  
 

On existence and concentration of solutions for Hamiltonian systems involving fractional operator with critical exponential growth

Augusto C. R. Costa, Bráulio B. V. Maia and Olímpio H. Miyagaki

Mathematische Nachrichten, 2022, vol. 295, issue 8, 1480-1512

Abstract: This paper is concerned with the existence and concentration of ground state solutions for the following class of fractional Schrödinger system (−Δ)1/2u+(λa(x)+1)u=Hv(u,v)inR,u,v∈H1/2(R),(−Δ)1/2v+(λa(x)+1)v=Hu(u,v)inR,u,v∈H1/2(R),\begin{align*} \hspace*{44pt}(-\Delta )^{1/2}u + (\lambda a(x) + 1)u= H_{v}(u,v) \text{ in } \mathbb {R}, \ \ u,v \in H^{1/2}(\mathbb {R}), \hspace*{-44pt}\\ \hspace*{44pt}(-\Delta )^{1/2}v + (\lambda a(x) + 1)v= H_{u}(u,v) \text{ in } \mathbb {R} , \ \ u,v \in H^{1/2}(\mathbb {R}),\hspace*{-44pt} \end{align*}where H has exponential critical growth, λ is a positive parameter and a(x)$a(x)$ has a potential well with int(a−1(0))${\mathrm{int}}\big (a^{-1}(0 ) \big )$ consisting of k disjoint components Ω1,⋯,Ωk$\Omega _{1}, \dots , \Omega _{k}$. The proof relies on variational methods and combines truncation arguments and the Moser iteration technique.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.201900397

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:8:p:1480-1512

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:8:p:1480-1512