Generalized Volterra‐type operators on generalized Fock spaces
Zi‐cong Yang and
Ze‐hua Zhou
Mathematische Nachrichten, 2022, vol. 295, issue 8, 1641-1662
Abstract:
Let φ and g be entire functions on the complex plane C$\mathbb {C}$. The generalized Volterra‐type operators Cφg$C_\varphi ^g$ and Tφg$T_\varphi ^g$ induced by φ and g are defined by Cφgf(z)=∫0zf′(φ(ζ))g(ζ)dζ\begin{equation*} \hspace*{104pt}C_\varphi ^g f(z)=\int _0^z f^{\prime }(\varphi (\zeta ))g(\zeta )\,d\zeta \end{equation*}and Tφgf(z)=∫0zf(φ(ζ))g(ζ)dζ,\begin{equation*} \hspace*{105pt}T_\varphi ^g f(z)=\int _0^z f(\varphi (\zeta ))g(\zeta )\,d\zeta , \end{equation*}where f is an entire function and z∈C$z\in \mathbb {C}$. In this paper, we characterize the boundedness and compactness of the generalized Volterra‐type operators Cφg$C_\varphi ^g$ and Tφg$T_\varphi ^g$ acting between the generalized Fock spaces Fpϕ$\mathcal {F}_p^\phi$, induced by smooth radial weights ϕ that decay faster than the classical Gaussian ones. In addition, we obtain a upper pointwise estimate for the Bergman kernel for F2ϕ$\mathcal {F}_2^\phi$.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000014
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:8:p:1641-1662
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().