EconPapers    
Economics at your fingertips  
 

Generalized Volterra‐type operators on generalized Fock spaces

Zi‐cong Yang and Ze‐hua Zhou

Mathematische Nachrichten, 2022, vol. 295, issue 8, 1641-1662

Abstract: Let φ and g be entire functions on the complex plane C$\mathbb {C}$. The generalized Volterra‐type operators Cφg$C_\varphi ^g$ and Tφg$T_\varphi ^g$ induced by φ and g are defined by Cφgf(z)=∫0zf′(φ(ζ))g(ζ)dζ\begin{equation*} \hspace*{104pt}C_\varphi ^g f(z)=\int _0^z f^{\prime }(\varphi (\zeta ))g(\zeta )\,d\zeta \end{equation*}and Tφgf(z)=∫0zf(φ(ζ))g(ζ)dζ,\begin{equation*} \hspace*{105pt}T_\varphi ^g f(z)=\int _0^z f(\varphi (\zeta ))g(\zeta )\,d\zeta , \end{equation*}where f is an entire function and z∈C$z\in \mathbb {C}$. In this paper, we characterize the boundedness and compactness of the generalized Volterra‐type operators Cφg$C_\varphi ^g$ and Tφg$T_\varphi ^g$ acting between the generalized Fock spaces Fpϕ$\mathcal {F}_p^\phi$, induced by smooth radial weights ϕ that decay faster than the classical Gaussian ones. In addition, we obtain a upper pointwise estimate for the Bergman kernel for F2ϕ$\mathcal {F}_2^\phi$.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000014

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:8:p:1641-1662

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:8:p:1641-1662