EconPapers    
Economics at your fingertips  
 

On uniform convergence of the inverse Fourier transform for differential equations and Hamiltonian systems with degenerating weight

Vadim Mogilevskii

Mathematische Nachrichten, 2022, vol. 295, issue 9, 1755-1782

Abstract: We study pseudospectral and spectral functions for Hamiltonian system Jy′−B(t)=λΔ(t)y$Jy^{\prime }-B(t)=\lambda \Delta (t)y$ and differential equation l[y]=λΔ(t)y$l[y]=\lambda \Delta (t)y$ with matrix‐valued coefficients defined on an interval I=[a,b)$\mathcal {I}=[a,b)$ with the regular endpoint a. It is not assumed that the matrix weight Δ(t)≥0$\Delta (t)\ge 0$ is invertible a.e. on I$\mathcal {I}$. In this case a pseudospectral function always exists, but the set of spectral functions may be empty. We obtain a parametrization σ=στ$\sigma =\sigma _\tau$ of all pseudospectral and spectral functions σ by means of a Nevanlinna parameter τ and single out in terms of τ and boundary conditions the class of functions y for which the inverse Fourier transform y(t)=∫Rφ(t,s)dσ(s)ŷ(s)$y(t)=\int _\mathbb {R}\varphi (t,s)\, d\sigma (s) \widehat{y}(s)$ converges uniformly. We also show that for scalar equation l[y]=λΔ(t)y$l[y]=\lambda \Delta (t)y$ the set of spectral functions is not empty. This enables us to extend the Kats–Krein and Atkinson results for scalar Sturm–Liouville equation −(p(t)y′)′+q(t)y=λΔ(t)y$-(p(t)y^{\prime })^{\prime }+q(t)y=\lambda \Delta (t) y$ to such equations with arbitrary coefficients p(t)$p(t)$ and q(t)$q(t)$ and arbitrary non trivial weight Δ(t)≥0$\Delta (t)\ge 0$.

Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000062

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:295:y:2022:i:9:p:1755-1782

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:295:y:2022:i:9:p:1755-1782