EconPapers    
Economics at your fingertips  
 

Poincaré's inequality and Sobolev spaces with monomial weights

Hernán Castro and Marco Cornejo

Mathematische Nachrichten, 2023, vol. 296, issue 10, 4500-4522

Abstract: In this paper, we use a weighted version of Poincaré's inequality to study density and extension properties of weighted Sobolev spaces over some open set Ω⊆RN$\Omega \subseteq \mathbb {R}^N$. Additionally, we study the specific case of monomial weights w(x1,…,xN)=∏i=1Nxiai,ai≥0$w(x_1,\ldots ,x_N)=\prod _{i=1}^N\left|x_i \right|^{a_i},\ a_i\ge 0$, showing the validity of a weighted Poincaré inequality together with some embedding properties of the associated weighed Sobolev spaces.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200100

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:10:p:4500-4522

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:10:p:4500-4522