Curvature loci of 3‐manifolds
Pedro Benedini Riul,
Raúl Oset Sinha and
Maria Aparecida Soares Ruas
Mathematische Nachrichten, 2023, vol. 296, issue 10, 4656-4672
Abstract:
We refine the affine classification of real nets of quadrics in order to obtain generic curvature loci of regular 3‐manifolds in R6$\mathbb {R}^6$ and singular corank one 3‐manifolds in R5$\mathbb {R}^5$. For this, we characterize the type of the curvature locus by the number and type of solutions of a system of equations given by four ternary cubics (which is a determinantal variety in some cases). We also study how singularities of the curvature locus of a regular 3‐manifold can go to infinity when the manifold is projected orthogonally in a tangent direction.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200170
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:10:p:4656-4672
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().