EconPapers    
Economics at your fingertips  
 

Positive solutions for a class semipositone quasilinear problem with Orlicz–Sobolev critical growth

J. Abrantes Santos, C. O. Alves and J. Zhou

Mathematische Nachrichten, 2023, vol. 296, issue 10, 4686-4711

Abstract: In this work, we study the existence of positive solutions for the following class of semipositone quasilinear problems: −ΔΦu=λf(x,u)+b(u)−ainΩ,u>0inΩ,u=0on∂Ω,$$\begin{equation*} {\left\lbrace \def\eqcellsep{&}\begin{array}{rclcl}-\Delta _{\Phi } u & = & \lambda f(x,u)+b(u)-a & \mbox{in} & \Omega , \\[3pt] u& > & 0 & \mbox{in} & \Omega , \\[3pt] u & = & 0 & \mbox{on} & \partial \Omega , \end{array} \right.} \end{equation*}$$where Ω⊂RN$\Omega \subset \mathbb {R}^N$ is a bounded domain, N≥2$N\ge 2$, λ,a>0$\lambda ,a > 0$ are parameters, f(x,u)$ f(x,u)$ is a Caractheodory function, and b(t)$b(t)$ has a critical growth with relation to the Orlicz–Sobolev space W01,Φ(Ω)$W_0^{1,\Phi }(\Omega )$. The main tools used are variational methods, a concentration compactness theorem for Orlicz–Sobolev space and some priori estimates.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100582

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:10:p:4686-4711

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:10:p:4686-4711