Positive solutions for a class semipositone quasilinear problem with Orlicz–Sobolev critical growth
J. Abrantes Santos,
C. O. Alves and
J. Zhou
Mathematische Nachrichten, 2023, vol. 296, issue 10, 4686-4711
Abstract:
In this work, we study the existence of positive solutions for the following class of semipositone quasilinear problems: −ΔΦu=λf(x,u)+b(u)−ainΩ,u>0inΩ,u=0on∂Ω,$$\begin{equation*} {\left\lbrace \def\eqcellsep{&}\begin{array}{rclcl}-\Delta _{\Phi } u & = & \lambda f(x,u)+b(u)-a & \mbox{in} & \Omega , \\[3pt] u& > & 0 & \mbox{in} & \Omega , \\[3pt] u & = & 0 & \mbox{on} & \partial \Omega , \end{array} \right.} \end{equation*}$$where Ω⊂RN$\Omega \subset \mathbb {R}^N$ is a bounded domain, N≥2$N\ge 2$, λ,a>0$\lambda ,a > 0$ are parameters, f(x,u)$ f(x,u)$ is a Caractheodory function, and b(t)$b(t)$ has a critical growth with relation to the Orlicz–Sobolev space W01,Φ(Ω)$W_0^{1,\Phi }(\Omega )$. The main tools used are variational methods, a concentration compactness theorem for Orlicz–Sobolev space and some priori estimates.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100582
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:10:p:4686-4711
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().