Fourier bases of the planar self‐affine measures with three digits
Ming‐Liang Chen,
Jing‐Cheng Liu and
Yong‐Hua Yao
Mathematische Nachrichten, 2023, vol. 296, issue 11, 4995-5011
Abstract:
For an expansive real matrix M=ρ−1C0ρ−1$M= \def\eqcellsep{&}\begin{bmatrix} \rho ^{-1} & \mathcal {C}\\ 0& \rho ^{-1} \end{bmatrix}$ and a noncollinear integer digit set D={(0,0)t,(α1,α2)t,(β1,β2)t}$D=\lbrace (0,0)^t,(\alpha _1,\alpha _2)^t,(\beta _1,\beta _2)^t\rbrace$ with α2−2β2∉3Z$\alpha _2-2\beta _2\notin 3\mathbb {Z}$, let μM,D$\mu _{M,D}$ be the self‐affine measure defined by μM,D(·)=13∑d∈DμM,D(M(·)−d)$\mu _{M,D}(\cdot )=\frac{1}{3}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)$. In this paper, some necessary and sufficient conditions for L2(μM,D)$L^2(\mu _{M,D})$ contains an infinite orthogonal exponential set or μM,D$\mu _{M,D}$ to be a spectral measure are given.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200299
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:11:p:4995-5011
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().