EconPapers    
Economics at your fingertips  
 

Fourier bases of the planar self‐affine measures with three digits

Ming‐Liang Chen, Jing‐Cheng Liu and Yong‐Hua Yao

Mathematische Nachrichten, 2023, vol. 296, issue 11, 4995-5011

Abstract: For an expansive real matrix M=ρ−1C0ρ−1$M= \def\eqcellsep{&}\begin{bmatrix} \rho ^{-1} & \mathcal {C}\\ 0& \rho ^{-1} \end{bmatrix}$ and a noncollinear integer digit set D={(0,0)t,(α1,α2)t,(β1,β2)t}$D=\lbrace (0,0)^t,(\alpha _1,\alpha _2)^t,(\beta _1,\beta _2)^t\rbrace$ with α2−2β2∉3Z$\alpha _2-2\beta _2\notin 3\mathbb {Z}$, let μM,D$\mu _{M,D}$ be the self‐affine measure defined by μM,D(·)=13∑d∈DμM,D(M(·)−d)$\mu _{M,D}(\cdot )=\frac{1}{3}\sum _{d\in D}\mu _{M,D}(M(\cdot )-d)$. In this paper, some necessary and sufficient conditions for L2(μM,D)$L^2(\mu _{M,D})$ contains an infinite orthogonal exponential set or μM,D$\mu _{M,D}$ to be a spectral measure are given.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200299

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:11:p:4995-5011

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:11:p:4995-5011