EconPapers    
Economics at your fingertips  
 

Martingale inequalities on Musielak–Orlicz Hardy spaces

Lechen He, Lihua Peng and Guangheng Xie

Mathematische Nachrichten, 2023, vol. 296, issue 11, 5171-5189

Abstract: Given a probability space (Ω,F,P)$(\Omega ,\mathcal {F},\mathbb {P})$ and a Musielak–Orlicz function φ:Ω×[0,∞)→[0,∞]$\varphi :\ \Omega \times [0,\infty )\rightarrow [0,\infty ]$, we investigate martingale inequalities in the framework of Musielak–Orlicz spaces by constructing atomic decompositions. Especially, the obtained results for Musielak–Orlicz functions φ(x,t)$\varphi (x,t)$ with particular structure, including the variable Orlicz functions Φ(tp(x))$\Phi (t^{p(x)})$, [Φ(t)]p(x)$[\Phi (t)]^{p(x)}$, the variable double phase‐growth tp(x)+a(x)tq(x)$t^{p(x)}+a(x)t^{q(x)}$, and the perturbed variable exponent function tp(x)log(e+t)$t^{p(x)}\log (e+t)$ are also new. Hence, we handle the martingale inequality for the above functional in a universal way.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202200405

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:11:p:5171-5189

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:11:p:5171-5189