Martingale inequalities on Musielak–Orlicz Hardy spaces
Lechen He,
Lihua Peng and
Guangheng Xie
Mathematische Nachrichten, 2023, vol. 296, issue 11, 5171-5189
Abstract:
Given a probability space (Ω,F,P)$(\Omega ,\mathcal {F},\mathbb {P})$ and a Musielak–Orlicz function φ:Ω×[0,∞)→[0,∞]$\varphi :\ \Omega \times [0,\infty )\rightarrow [0,\infty ]$, we investigate martingale inequalities in the framework of Musielak–Orlicz spaces by constructing atomic decompositions. Especially, the obtained results for Musielak–Orlicz functions φ(x,t)$\varphi (x,t)$ with particular structure, including the variable Orlicz functions Φ(tp(x))$\Phi (t^{p(x)})$, [Φ(t)]p(x)$[\Phi (t)]^{p(x)}$, the variable double phase‐growth tp(x)+a(x)tq(x)$t^{p(x)}+a(x)t^{q(x)}$, and the perturbed variable exponent function tp(x)log(e+t)$t^{p(x)}\log (e+t)$ are also new. Hence, we handle the martingale inequality for the above functional in a universal way.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200405
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:11:p:5171-5189
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().