On singular generalizations of the Singer–Hopf conjecture
Laurenţiu Maxim
Mathematische Nachrichten, 2023, vol. 296, issue 11, 5232-5241
Abstract:
The Singer–Hopf conjecture predicts the sign of the topological Euler characteristic of a closed aspherical manifold. In this note, we propose singular generalizations of the Singer–Hopf conjecture, formulated in terms of the Euler–Mather characteristic, intersection homology Euler characteristic and, resp., virtual Euler characteristic of a closed irreducible subvariety of an aspherical complex projective manifold. We prove these new conjectures under the assumption that the cotangent bundle of the ambient variety is numerically effective (nef), or, more generally, when the ambient manifold admits a finite morphism to a complex projective manifold with a nef cotangent bundle. The main ingredients in the proof are the semi‐positivity properties of nef vector bundles together with a topological version of the Riemann–Roch theorem, proved by Kashiwara.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200322
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:11:p:5232-5241
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().