Holmstedt's formula for the K‐functional: the limit case θ0=θ1$\theta _0=\theta _1$
Irshaad Ahmed,
Alberto Fiorenza and
Amiran Gogatishvili
Mathematische Nachrichten, 2023, vol. 296, issue 12, 5474-5492
Abstract:
We consider K‐interpolation spaces involving slowly varying functions, and derive necessary and sufficient conditions for a Holmstedt‐type formula to be held in the limiting case θ0=θ1∈{0,1}$\theta _0=\theta _1\in \lbrace 0,1\rbrace$. We also study the case θ0=θ1∈(0,1)$\theta _0=\theta _1\in (0,1)$. Applications are given to Lorentz–Karamata spaces, generalized gamma spaces, and Besov spaces.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200440
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:12:p:5474-5492
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().