Multigraded apolarity
Maciej Gałązka
Mathematische Nachrichten, 2023, vol. 296, issue 1, 286-313
Abstract:
We generalize methods to compute various kinds of rank to the case of a toric variety X embedded into projective space using a very ample line bundle L$\mathcal {L}$. We find an upper bound on the cactus rank. We use this to compute rank, border rank, and cactus rank of monomials in H0(X,L)∗$H^0(X, \mathcal {L})^*$ when X is P1×P1$\mathbb {P}^1 \times \mathbb {P}^1$, the Hirzebruch surface F1$\mathbb {F}_1$, or the weighted projective plane P(1,1,4)$\mathbb {P}(1,1,4)$.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000484
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:1:p:286-313
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().