EconPapers    
Economics at your fingertips  
 

Multigraded apolarity

Maciej Gałązka

Mathematische Nachrichten, 2023, vol. 296, issue 1, 286-313

Abstract: We generalize methods to compute various kinds of rank to the case of a toric variety X embedded into projective space using a very ample line bundle L$\mathcal {L}$. We find an upper bound on the cactus rank. We use this to compute rank, border rank, and cactus rank of monomials in H0(X,L)∗$H^0(X, \mathcal {L})^*$ when X is P1×P1$\mathbb {P}^1 \times \mathbb {P}^1$, the Hirzebruch surface F1$\mathbb {F}_1$, or the weighted projective plane P(1,1,4)$\mathbb {P}(1,1,4)$.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000484

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:1:p:286-313

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:1:p:286-313