Eigenvalue inequalities for the buckling problem of the drifting Laplacian
Xuerong Qi and
Zhaoxia Wang
Mathematische Nachrichten, 2023, vol. 296, issue 2, 840-852
Abstract:
In this paper, we study the buckling problem of the drifting Laplacian on bounded domains in a complete Riemannian manifold with nonnegative ∞‐dimensional Bakry–Émery Ricci curvature. According to the property of the manifold, we obtain a family of trial functions. By making use of these trial functions, we derive a universal inequality of eigenvalues, which is independent of the domains.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000182
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:2:p:840-852
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().