Essential finite generation of extensions of valuation rings
Rankeya Datta
Mathematische Nachrichten, 2023, vol. 296, issue 3, 1041-1055
Abstract:
Given a generically finite local extension of valuation rings V⊂W$V \subset W$, the question of whether W is the localization of a finitely generated V‐algebra is significant for approaches to the problem of local uniformization of valuations using ramification theory. Hagen Knaf proposed a characterization of when W is essentially of finite type over V in terms of classical invariants of the extension of associated valuations. Knaf's conjecture has been verified in important special cases by Cutkosky and Novacoski using local uniformization of Abhyankar valuations and resolution of singularities of excellent surfaces in arbitrary characteristic, and by Cutkosky for valuation rings of function fields of characteristic 0 using embedded resolution of singularities. In this paper, we prove Knaf's conjecture in full generality.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100190
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1041-1055
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().