EconPapers    
Economics at your fingertips  
 

Essential finite generation of extensions of valuation rings

Rankeya Datta

Mathematische Nachrichten, 2023, vol. 296, issue 3, 1041-1055

Abstract: Given a generically finite local extension of valuation rings V⊂W$V \subset W$, the question of whether W is the localization of a finitely generated V‐algebra is significant for approaches to the problem of local uniformization of valuations using ramification theory. Hagen Knaf proposed a characterization of when W is essentially of finite type over V in terms of classical invariants of the extension of associated valuations. Knaf's conjecture has been verified in important special cases by Cutkosky and Novacoski using local uniformization of Abhyankar valuations and resolution of singularities of excellent surfaces in arbitrary characteristic, and by Cutkosky for valuation rings of function fields of characteristic 0 using embedded resolution of singularities. In this paper, we prove Knaf's conjecture in full generality.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100190

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1041-1055

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:3:p:1041-1055