EconPapers    
Economics at your fingertips  
 

Biharmonic elliptic problems with second Hessian and gradient nonlinearities

Gaurav Dwivedi and Jagmohan Tyagi

Mathematische Nachrichten, 2023, vol. 296, issue 3, 1056-1070

Abstract: We establish the existence of a solution to the following problem: Δ2u−α|∇u|r=μS2(D2u)+λfinΩ,u=0=∂u∂non∂Ω,$$\begin{equation*}\hskip7pc \def\eqcellsep{&}\begin{array}{ll}\Delta ^2u-\alpha |\nabla u|^r=\mu S_2(D^2 u)+\lambda f & \mbox{in } \Omega , \\[3pt] u=0=\displaystyle \frac{\partial u}{\partial n} &\mbox{on } \partial \Omega , \end{array} \end{equation*}$$where Ω⊂RN,N=2,3$\Omega \subset {\mathbb {R}}^N,\, N=2,3$, is a smooth and bounded domain and S2(D2u)(x)=∑1≤i 0,λ>0$ f\in L^1(\Omega ),\, \,\alpha >0,\,\lambda >0$ and 0≤μ≤1$0\le \mu \le 1$ are parameters. Moreover, we assume that r≥1$r\ge 1$ if N=2$N=2$ and 1≤r≤6$1\le r\le 6$ if N=3$N=3$. We use variational arguments and an iterative technique to prove our results.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100069

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1056-1070

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:3:p:1056-1070