Biharmonic elliptic problems with second Hessian and gradient nonlinearities
Gaurav Dwivedi and
Jagmohan Tyagi
Mathematische Nachrichten, 2023, vol. 296, issue 3, 1056-1070
Abstract:
We establish the existence of a solution to the following problem: Δ2u−α|∇u|r=μS2(D2u)+λfinΩ,u=0=∂u∂non∂Ω,$$\begin{equation*}\hskip7pc \def\eqcellsep{&}\begin{array}{ll}\Delta ^2u-\alpha |\nabla u|^r=\mu S_2(D^2 u)+\lambda f & \mbox{in } \Omega , \\[3pt] u=0=\displaystyle \frac{\partial u}{\partial n} &\mbox{on } \partial \Omega , \end{array} \end{equation*}$$where Ω⊂RN,N=2,3$\Omega \subset {\mathbb {R}}^N,\, N=2,3$, is a smooth and bounded domain and S2(D2u)(x)=∑1≤i 0,λ>0$ f\in L^1(\Omega ),\, \,\alpha >0,\,\lambda >0$ and 0≤μ≤1$0\le \mu \le 1$ are parameters. Moreover, we assume that r≥1$r\ge 1$ if N=2$N=2$ and 1≤r≤6$1\le r\le 6$ if N=3$N=3$. We use variational arguments and an iterative technique to prove our results.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100069
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1056-1070
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().