Regularity of transition densities and ergodicity for affine jump‐diffusions
Martin Friesen,
Peng Jin,
Jonas Kremer and
Barbara Rüdiger
Mathematische Nachrichten, 2023, vol. 296, issue 3, 1117-1134
Abstract:
This paper studies the transition density and exponential ergodicity for affine processes on the canonical state space R≥0m×Rn$\mathbb {R}_{\ge 0}^{m}\times \mathbb {R}^{n}$. Under a Hörmander‐type condition for diffusion components as well as a boundary nonattainment condition, we derive the existence and regularity of the transition densities and then prove the strong Feller property of the associated semigroup. Moreover, we also show that, under an additional subcriticality condition on the drift, the corresponding affine process is exponentially ergodic in the total variation distance.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000299
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1117-1134
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().