EconPapers    
Economics at your fingertips  
 

Existence of uncertainty minimizers for the continuous wavelet transform

Simon Halvdansson, Jan‐Fredrik Olsen, Nir Sochen and Ron Levie

Mathematische Nachrichten, 2023, vol. 296, issue 3, 1156-1172

Abstract: Continuous wavelet design is the endeavor to construct mother wavelets with desirable properties for the continuous wavelet transform (CWT). One class of methods for choosing a mother wavelet involves minimizing a functional, called the wavelet uncertainty functional. Recently, two new wavelet uncertainty functionals were derived from theoretical foundations. In both approaches, the uncertainty of a mother wavelet describes its concentration, or accuracy, as a time‐scale probe. While an uncertainty minimizing mother wavelet can be proven to have desirable localization properties, the existence of such a minimizer was never studied. In this paper, we prove the existence of minimizers for the two uncertainty functionals.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100466

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1156-1172

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:3:p:1156-1172