Musielak–Orlicz Hardy space estimates for commutators of Calderón–Zygmund operators
Duong Quoc Huy and
Luong Dang Ky
Mathematische Nachrichten, 2023, vol. 296, issue 3, 1173-1189
Abstract:
Let δ∈(0,1]$\delta \in (0,1]$ and T be a δ‐Calderón–Zygmund operator. When p∈(0,1]$p\in (0,1]$ and b∈BMO(Rn)$b\in {\rm BMO}(\mathbb {R}^n)$, it is well‐known (see the work by Harboure, Segovia, and Torrea [Illinois J. Math. 41 (1997), no. 4, 676–700]) that the commutator [b,T]$[b, T]$ is not bounded from the Hardy space Hp(Rn)$H^p(\mathbb {R}^n)$ into the Lebesgue space Lp(Rn)$L^p(\mathbb {R}^n)$ if b is not a constant function. Let φ be a Musielak–Orlicz function satisfying that, for any (x,t)∈Rn×[0,∞)$(x,t)\in \mathbb {R}^n\times [0,\infty )$, φ(·,t)$\varphi (\cdot ,t)$ belongs to the Muckenhoupt weight class A∞(Rn)$A_\infty (\mathbb {R}^n)$ with the critical weight exponent q(φ)∈[1,∞)$q(\varphi )\in [1,\infty )$ and φ(x,·)$\varphi (x,\cdot )$ is an Orlicz function with the critical lower type i(φ)>q(φ)(1+δ/n)$i(\varphi )> q(\varphi )(1+\delta /n)$. In this paper, we find a proper subspace BMOφ(Rn)${\mathop \mathcal {BMO}_\varphi ({\mathbb {R}}^n)}$ of BMO(Rn)$\mathop \mathrm{BMO}(\mathbb {R}^n)$ such that, if b∈BMOφ(Rn),$b\in {\mathop \mathcal {BMO}_\varphi ({\mathbb {R}}^n),}$ then [b,T]$[b,T]$ is bounded from the Musielak–Orlicz Hardy space Hφ(Rn)$H^\varphi (\mathbb {R}^n)$ into the Musielak–Orlicz space Lφ(Rn)$L^\varphi (\mathbb {R}^n)$. Conversely, if b∈BMO(Rn)$b\in {\rm BMO}({\mathbb {R}}^n)$ and the commutators {[b,Rj]}j=1n$\lbrace [b,R_j]\rbrace _{j=1}^n$ of the classical Riesz transforms are bounded from Hφ(Rn)$H^\varphi ({\mathbb {R}}^n)$ into Lφ(Rn)$L^\varphi (\mathbb {R}^n)$, then b∈BMOφ(Rn)$b\in {\mathop \mathcal {BMO}_\varphi ({\mathbb {R}}^n)}$. Our results generalize some recent results by Huy and Ky [Vietnam J. Math. (2020). https://doi.org/10.1007/s10013‐020‐00406‐2] and Liang, Ky, and Yang [Proc. Amer. Math. Soc. 144 (2016), no. 12, 5171–5181].
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000525
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1173-1189
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().