EconPapers    
Economics at your fingertips  
 

Musielak–Orlicz Hardy space estimates for commutators of Calderón–Zygmund operators

Duong Quoc Huy and Luong Dang Ky

Mathematische Nachrichten, 2023, vol. 296, issue 3, 1173-1189

Abstract: Let δ∈(0,1]$\delta \in (0,1]$ and T be a δ‐Calderón–Zygmund operator. When p∈(0,1]$p\in (0,1]$ and b∈BMO(Rn)$b\in {\rm BMO}(\mathbb {R}^n)$, it is well‐known (see the work by Harboure, Segovia, and Torrea [Illinois J. Math. 41 (1997), no. 4, 676–700]) that the commutator [b,T]$[b, T]$ is not bounded from the Hardy space Hp(Rn)$H^p(\mathbb {R}^n)$ into the Lebesgue space Lp(Rn)$L^p(\mathbb {R}^n)$ if b is not a constant function. Let φ be a Musielak–Orlicz function satisfying that, for any (x,t)∈Rn×[0,∞)$(x,t)\in \mathbb {R}^n\times [0,\infty )$, φ(·,t)$\varphi (\cdot ,t)$ belongs to the Muckenhoupt weight class A∞(Rn)$A_\infty (\mathbb {R}^n)$ with the critical weight exponent q(φ)∈[1,∞)$q(\varphi )\in [1,\infty )$ and φ(x,·)$\varphi (x,\cdot )$ is an Orlicz function with the critical lower type i(φ)>q(φ)(1+δ/n)$i(\varphi )> q(\varphi )(1+\delta /n)$. In this paper, we find a proper subspace BMOφ(Rn)${\mathop \mathcal {BMO}_\varphi ({\mathbb {R}}^n)}$ of BMO(Rn)$\mathop \mathrm{BMO}(\mathbb {R}^n)$ such that, if b∈BMOφ(Rn),$b\in {\mathop \mathcal {BMO}_\varphi ({\mathbb {R}}^n),}$ then [b,T]$[b,T]$ is bounded from the Musielak–Orlicz Hardy space Hφ(Rn)$H^\varphi (\mathbb {R}^n)$ into the Musielak–Orlicz space Lφ(Rn)$L^\varphi (\mathbb {R}^n)$. Conversely, if b∈BMO(Rn)$b\in {\rm BMO}({\mathbb {R}}^n)$ and the commutators {[b,Rj]}j=1n$\lbrace [b,R_j]\rbrace _{j=1}^n$ of the classical Riesz transforms are bounded from Hφ(Rn)$H^\varphi ({\mathbb {R}}^n)$ into Lφ(Rn)$L^\varphi (\mathbb {R}^n)$, then b∈BMOφ(Rn)$b\in {\mathop \mathcal {BMO}_\varphi ({\mathbb {R}}^n)}$. Our results generalize some recent results by Huy and Ky [Vietnam J. Math. (2020). https://doi.org/10.1007/s10013‐020‐00406‐2] and Liang, Ky, and Yang [Proc. Amer. Math. Soc. 144 (2016), no. 12, 5171–5181].

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000525

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1173-1189

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:3:p:1173-1189