Chernoff approximations of Feller semigroups in Riemannian manifolds
Sonia Mazzucchi,
Valter Moretti,
Ivan Remizov and
Oleg Smolyanov
Mathematische Nachrichten, 2023, vol. 296, issue 3, 1244-1284
Abstract:
Chernoff approximations of Feller semigroups and the associated diffusion processes in Riemannian manifolds are studied. The manifolds are assumed to be of bounded geometry, thus including all compact manifolds and also a wide range of non‐compact manifolds. Sufficient conditions are established for a class of second order elliptic operators to generate a Feller semigroup on a (generally non‐compact) manifold of bounded geometry. A construction of Chernoff approximations is presented for these Feller semigroups in terms of shift operators. This provides approximations of solutions to initial value problems for parabolic equations with variable coefficients on the manifold. It also yields weak convergence of a sequence of random walks on the manifolds to the diffusion processes associated with the elliptic generator. For parallelizable manifolds this result is applied in particular to the representation of Brownian motion on the manifolds as limits of the corresponding random walks.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100291
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:3:p:1244-1284
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().