EconPapers    
Economics at your fingertips  
 

Monodromy conjecture for semi‐quasihomogeneous hypersurfaces

Guillem Blanco, Nero Budur and Robin van der Veer

Mathematische Nachrichten, 2023, vol. 296, issue 4, 1394-1403

Abstract: We give a proof of the monodromy conjecture relating the poles of motivic zeta functions with roots of b‐functions for isolated quasihomogeneous hypersurfaces, and more generally for semi‐quasihomogeneous hypersurfaces. We also give a strange generalization allowing a twist by certain differential forms.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100376

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:4:p:1394-1403

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:4:p:1394-1403