EconPapers    
Economics at your fingertips  
 

Characterization of the boundedness of generalized fractional integral and maximal operators on Orlicz–Morrey and weak Orlicz–Morrey spaces

Ryota Kawasumi, Eiichi Nakai and Minglei Shi

Mathematische Nachrichten, 2023, vol. 296, issue 4, 1483-1503

Abstract: We give necessary and sufficient conditions for the boundedness of generalized fractional integral and maximal operators on Orlicz–Morrey and weak Orlicz–Morrey spaces. To do this, we prove the weak–weak type modular inequality of the Hardy–Littlewood maximal operator with respect to the Young function. Orlicz–Morrey spaces contain Lp$L^p$ spaces (1≤p≤∞$1\le p\le \infty$), Orlicz spaces, and generalized Morrey spaces as special cases. Hence, we get necessary and sufficient conditions on these function spaces as corollaries.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/mana.202000332

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:4:p:1483-1503

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:4:p:1483-1503