Irregular cusps of ball quotients
Yota Maeda
Mathematische Nachrichten, 2023, vol. 296, issue 4, 1560-1588
Abstract:
We study the branch divisors on the boundary of the canonical toroidal compactification of ball quotients. We show a criterion, the low slope cusp form trick, for proving that ball quotients are of general type. Moreover, we classify when irregular cusps exist in the case of the discriminant kernel and construct concrete examples for some arithmetic subgroups. As another direction of study, when a complex ball is embedded into a Hermitian symmetric domain of type IV, we determine when regular or irregular cusps map to regular or irregular cusps studied by Ma.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100639
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:4:p:1560-1588
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().