Some examples of equivalent rearrangement‐invariant quasi‐norms defined via f∗$f^*$ or f∗∗$f^{**}$
Leo R. Ya. Doktorski,
Pedro Fernández‐Martínez and
Teresa Signes
Mathematische Nachrichten, 2023, vol. 296, issue 5, 1781-1802
Abstract:
We consider Lorentz–Karamata spaces, small and grand Lorentz–Karamata spaces, and the so‐called L$\mathcal {L}$, R$\mathcal {R}$, LL$\mathcal {LL}$, LR$\mathcal {LR}$, RL$\mathcal {RL}$, and RR$\mathcal {RR}$ spaces. The quasi‐norms for a function f in each of these spaces can be defined via the nonincreasing rearrangement f∗$f^*$ or via the maximal function f∗∗$f^{**}$. We investigate when these quasi‐norms are equivalent. Most of the proofs are based on Hardy‐type inequalities. As an application, we demonstrate how our general results can be used to establish interpolation formulae for grand and small Lorentz–Karamata spaces.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202200112
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:5:p:1781-1802
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().