Cauchy–Szegö commutators on weighted Morrey spaces
Zunwei Fu,
Ruming Gong,
Elodie Pozzi and
Qingyan Wu
Mathematische Nachrichten, 2023, vol. 296, issue 5, 1859-1885
Abstract:
In the setting of quaternionic Heisenberg group Hn−1$\mathcal H^{n-1}$, we characterize the boundedness and compactness of commutator [b,C]$[b,\mathcal {C}]$ for the Cauchy–Szegö operator C$\mathcal {C}$ on the weighted Morrey space Lwp,κ(Hn−1)$L_w^{p,\,\kappa }(\mathcal H^{n-1})$ with p∈(1,∞)$p\in (1, \infty )$, κ∈(0,1)$\kappa \in (0, 1)$, and w∈Ap(Hn−1)$w\in A_p(\mathcal H^{n-1})$. More precisely, we prove that [b,C]$[b,\mathcal {C}]$ is bounded on Lwp,κ(Hn−1)$L_w^{p,\,\kappa }(\mathcal H^{n-1})$ if and only if b∈BMO(Hn−1)$b\in {\rm BMO}(\mathcal H^{n-1})$. And [b,C]$[b,\mathcal {C}]$ is compact on Lwp,κ(Hn−1)$L_w^{p,\,\kappa }(\mathcal H^{n-1})$ if and only if b∈VMO(Hn−1)$b\in {\rm VMO}(\mathcal H^{n-1})$.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202000139
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:5:p:1859-1885
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().