EconPapers    
Economics at your fingertips  
 

Nuclear operators and applications to kernel operators

Marian Nowak

Mathematische Nachrichten, 2023, vol. 296, issue 5, 2109-2120

Abstract: Let Σ be a σ‐algebra of subsets of a set Ω and B(Σ)$B(\Sigma )$ be the Banach lattice of bounded Σ‐measurable real functions on Ω. For a Banach space E, we establish the relationship between a countably additive measure m:Σ→E$m:\Sigma \rightarrow E$ of finite variation |m|(Ω)$|m|(\Omega )$ with a |m|$|m|$‐Bochner integrable derivative and nuclearity of the corresponding integration operator Tm:B(Σ)→E$T_m:B(\Sigma )\rightarrow E$. As an application, we derive that if Ω is a topological Hausdorff space and Y is a compact Hausdorff space and k∈Cb(Y×Ω)$k\in C_b(Y\times \Omega )$, then the corresponding kernel operator T:B(Bo)→C(Y)$T:B({\cal B}o)\rightarrow C(Y)$ is nuclear.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100335

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:5:p:2109-2120

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:5:p:2109-2120