EconPapers    
Economics at your fingertips  
 

A generalized mean field type flow on a closed Riemann surface

Yamin Wang

Mathematische Nachrichten, 2023, vol. 296, issue 5, 2150-2166

Abstract: Let (Σ,g)$(\Sigma ,g)$ be a closed Riemann surface. Let ψ, h be two smooth functions on Σ with ∫Σψdvg≠0$\int _\Sigma \psi dv_g\ne 0$ and h≥0,h≢0$h\ge 0, h\not\equiv 0$. In this paper, using the method of flow due to Casté$\mathrm{\acute{e}}$ras (Pacific J. Math. 276(2015), no. 2, 321–345) and Sun–Zhu (Calc. Var. Partial Differential Equations 60(2021), no. 1, 26), we prove that the solution of the equation −Δgu=8πheu∫Σheudvg−ψ∫Σψdvg$$\begin{equation*} -\Delta _g u=8\pi {\left(\frac{h e^u}{\int _\Sigma h e^u dv_g}-\frac{\psi }{\int _\Sigma \psi dv_g}\right)} \end{equation*}$$exists under given conditions. This gives a new proof of the main results of Zhu (Nonlinear Anal. 169(2018), 38–58).

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100154

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:5:p:2150-2166

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:5:p:2150-2166