Periodic solutions of second‐order degenerate differential equations with infinite delay in Banach spaces
Shangquan Bu and
Gang Cai
Mathematische Nachrichten, 2023, vol. 296, issue 6, 2276-2292
Abstract:
We consider the well‐posedness of the second‐order degenerate differential equations (Mu′)′(t)+Λu′(t)+∫−∞ta(t−s)u′(s)ds=Au(t)+∫−∞tb(t−s)Bu(s)ds+f(t)(P)$$\begin{eqnarray*} &&\hspace*{18pc} (Mu^{\prime })^{\prime }(t) +\Lambda u^{\prime }(t)+\int _{-\infty }^t a(t-s)u^{\prime }(s)ds\\ &&\hspace*{18pc}\quad = Au(t)+ \int _{-\infty }^t b(t-s) Bu(s) ds + f(t)\qquad\qquad\qquad \mathrm{{(P)}} \end{eqnarray*}$$with infinite delay on [0, 2π] in Lebesgue–Bochner spaces Lp(T;X)$L^p(\mathbb {T}; X)$ and periodic Besov spaces Bp,qs(T;X)$B_{p,q}^s (\mathbb {T}; X)$, where A,B,Λ$A,\ B,\ \Lambda$, and M are closed linear operators in a Banach space X satisfying D(A)∩D(B)⊂D(M)∩D(Λ)$D(A)\cap D(B)\subset D(M) \cap D(\Lambda )$ and the kernels a,b∈L1(R+)$ a, b\in L^1(\mathbb {R}_+)$. Using known operator‐valued Fourier multiplier theorems, we are able to give necessary and sufficient conditions for the well‐posedness of (P) in Lp(T;X)$L^p(\mathbb {T}; X)$ and Bp,qs$B_{p,q}^s$(T;X)$(\mathbb {T}; X)$. These results are applied to examine some concrete examples.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100147
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:6:p:2276-2292
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().