EconPapers    
Economics at your fingertips  
 

Periodic solutions of second‐order degenerate differential equations with infinite delay in Banach spaces

Shangquan Bu and Gang Cai

Mathematische Nachrichten, 2023, vol. 296, issue 6, 2276-2292

Abstract: We consider the well‐posedness of the second‐order degenerate differential equations (Mu′)′(t)+Λu′(t)+∫−∞ta(t−s)u′(s)ds=Au(t)+∫−∞tb(t−s)Bu(s)ds+f(t)(P)$$\begin{eqnarray*} &&\hspace*{18pc} (Mu^{\prime })^{\prime }(t) +\Lambda u^{\prime }(t)+\int _{-\infty }^t a(t-s)u^{\prime }(s)ds\\ &&\hspace*{18pc}\quad = Au(t)+ \int _{-\infty }^t b(t-s) Bu(s) ds + f(t)\qquad\qquad\qquad \mathrm{{(P)}} \end{eqnarray*}$$with infinite delay on [0, 2π] in Lebesgue–Bochner spaces Lp(T;X)$L^p(\mathbb {T}; X)$ and periodic Besov spaces Bp,qs(T;X)$B_{p,q}^s (\mathbb {T}; X)$, where A,B,Λ$A,\ B,\ \Lambda$, and M are closed linear operators in a Banach space X satisfying D(A)∩D(B)⊂D(M)∩D(Λ)$D(A)\cap D(B)\subset D(M) \cap D(\Lambda )$ and the kernels a,b∈L1(R+)$ a, b\in L^1(\mathbb {R}_+)$. Using known operator‐valued Fourier multiplier theorems, we are able to give necessary and sufficient conditions for the well‐posedness of (P) in Lp(T;X)$L^p(\mathbb {T}; X)$ and Bp,qs$B_{p,q}^s$(T;X)$(\mathbb {T}; X)$. These results are applied to examine some concrete examples.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100147

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:6:p:2276-2292

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:6:p:2276-2292