EconPapers    
Economics at your fingertips  
 

Liouville‐type theorems for a nonlinear fractional Choquard equation

Anh Tuan Duong, Tran Thi Loan, Dao Trong Quyet and Dao Manh Thang

Mathematische Nachrichten, 2023, vol. 296, issue 6, 2321-2331

Abstract: In this paper, we are concerned with the fractional Choquard equation on the whole space RN$\mathbb {R}^N$(−Δ)su=1|x|N−2s∗upup−1$$\begin{equation*} \hspace*{7pc}(-\Delta )^s u={\left(\frac{1}{|x|^{N-2s}}*u^p\right)}u^{p-1} \end{equation*}$$with 0 2s$N>2s$ and p∈R$p\in \mathbb {R}$. We first prove that the equation does not possess any positive solution for p≤1$p\le 1$. When p>1$p>1$, we establish a Liouville type theorem saying that if N

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000462

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:6:p:2321-2331

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:6:p:2321-2331