Analytic twists of GL2×GL2$\rm GL_2\times \rm GL_2$ automorphic forms
Bingrong Huang,
Qingfeng Sun and
Huimin Zhang
Mathematische Nachrichten, 2023, vol. 296, issue 6, 2366-2394
Abstract:
Let f and g be holomorphic or Maass cusp forms for SL2(Z)$\rm SL_2(\mathbb {Z})$ with normalized Fourier coefficients λf(n)$\lambda _f(n)$ and λg(n)$\lambda _g(n)$, respectively. In this paper, we prove nontrivial estimates for the sum ∑n=1∞λf(n)λg(n)etφnXVnX,$$\begin{equation*} \hspace*{8pc}\sum _{n=1}^{\infty }\lambda _f(n) \lambda _g(n)e{\left(t \varphi {\left(\frac{n}{X}\right)}\right)}V{\left(\frac{n}{X}\right)}, \end{equation*}$$where e(x)=e2πix$e(x)=\text{e}^{2\pi ix}$, V(x)∈Cc∞(1,2)$V(x)\in \mathcal {C}_c^{\infty }(1,2)$, t≥1$t\ge 1$ is a large parameter and φ(x)$\varphi (x)$ is some nonlinear real‐valued smooth function. Applications of these estimates include a subconvex bound for the Rankin–Selberg L‐function L(s,f⊗g)$L(s,f\otimes g)$ in the t‐aspect, an improved estimate for a nonlinear exponential twisted sum and the following asymptotic formula for the sum of the Fourier coefficients of certain GL5$\rm {GL}_5$ Eisenstein series ∑n≤Xλ1⊞(f×g)(n)=L(1,f×g)X+O(X23−1356+ε)$$\begin{equation*} \hspace*{6pc}\sum _{n \le X}\lambda _{1\boxplus (f\times g)}(n) =L(1,f\times g)X + O(X^{\frac{2}{3}-\frac{1}{356}+\varepsilon }) \end{equation*}$$for any ε>0$\varepsilon >0$.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100550
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:6:p:2366-2394
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().