EconPapers    
Economics at your fingertips  
 

Analytic twists of GL2×GL2$\rm GL_2\times \rm GL_2$ automorphic forms

Bingrong Huang, Qingfeng Sun and Huimin Zhang

Mathematische Nachrichten, 2023, vol. 296, issue 6, 2366-2394

Abstract: Let f and g be holomorphic or Maass cusp forms for SL2(Z)$\rm SL_2(\mathbb {Z})$ with normalized Fourier coefficients λf(n)$\lambda _f(n)$ and λg(n)$\lambda _g(n)$, respectively. In this paper, we prove nontrivial estimates for the sum ∑n=1∞λf(n)λg(n)etφnXVnX,$$\begin{equation*} \hspace*{8pc}\sum _{n=1}^{\infty }\lambda _f(n) \lambda _g(n)e{\left(t \varphi {\left(\frac{n}{X}\right)}\right)}V{\left(\frac{n}{X}\right)}, \end{equation*}$$where e(x)=e2πix$e(x)=\text{e}^{2\pi ix}$, V(x)∈Cc∞(1,2)$V(x)\in \mathcal {C}_c^{\infty }(1,2)$, t≥1$t\ge 1$ is a large parameter and φ(x)$\varphi (x)$ is some nonlinear real‐valued smooth function. Applications of these estimates include a subconvex bound for the Rankin–Selberg L‐function L(s,f⊗g)$L(s,f\otimes g)$ in the t‐aspect, an improved estimate for a nonlinear exponential twisted sum and the following asymptotic formula for the sum of the Fourier coefficients of certain GL5$\rm {GL}_5$ Eisenstein series ∑n≤Xλ1⊞(f×g)(n)=L(1,f×g)X+O(X23−1356+ε)$$\begin{equation*} \hspace*{6pc}\sum _{n \le X}\lambda _{1\boxplus (f\times g)}(n) =L(1,f\times g)X + O(X^{\frac{2}{3}-\frac{1}{356}+\varepsilon }) \end{equation*}$$for any ε>0$\varepsilon >0$.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100550

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:6:p:2366-2394

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:6:p:2366-2394