EconPapers    
Economics at your fingertips  
 

Normalized ground state for the Sobolev critical Schrödinger equation involving Hardy term with combined nonlinearities

Houwang Li and Wenming Zou

Mathematische Nachrichten, 2023, vol. 296, issue 6, 2440-2466

Abstract: In this paper, we study the existence and properties of normalized solutions for the following Sobolev critical Schrödinger equation involving Hardy term: −Δu−μ|x|2u=λu+|u|2∗−2u+ν|u|p−2uinRN,N≥3,$$\begin{equation*} -\Delta u-\frac{\mu }{|x|^2}u=\lambda u+|u|^{2^*-2}u+\nu |u|^{p-2}u \quad \text{in}\nobreakspace {\mathbb {R}^N},N\ge 3, \end{equation*}$$with prescribed mass ∫RNu2=a2,$$\begin{equation*} \int _{{\mathbb {R}^N}} u^2=a^2, \end{equation*}$$where 2* is the Sobolev critical exponent. For a L2‐subcritical, L2‐critical, or L2‐supercritical perturbation ν|u|p−2u$\nu |u|^{p-2}u$, we prove several existence results of normalized ground state when ν≥0$\nu \ge 0$ and non‐existence results when ν≤0$\nu \le 0$. Furthermore, we also consider the asymptotic behavior of the normalized solutions u as μ→0$\mu \rightarrow 0$ or ν→0$\nu \rightarrow 0$.

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202000481

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:6:p:2440-2466

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:6:p:2440-2466