Estimates for the entropy numbers of the Nikol'skii–Besov classes of functions with mixed smoothness in the space of quasi‐continuous functions
Anatolii S. Romanyuk and
Serhii Ya. Yanchenko
Mathematische Nachrichten, 2023, vol. 296, issue 6, 2575-2587
Abstract:
We obtained order estimates for the entropy numbers of the Nikol'skii–Besov classes of functions Bp,θr(Td)$B^{\bm{r}}_{p,\theta }(\mathbb {T}^d)$ with mixed smoothness in the metric of the space of quasi‐continuous functions QC(Td)$QC(\mathbb {T}^d)$. We also showed that for 2≤p≤∞$2\le p \le \infty$, 2≤θ 12$r_1>\frac{1}{2}$, d≥2$d\ge 2$, the estimate of the corresponding asymptotic characteristic is exact in order.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100202
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:6:p:2575-2587
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().