EconPapers    
Economics at your fingertips  
 

On fractional semidiscrete Dirac operators of Lévy–Leblond type

Nelson Faustino

Mathematische Nachrichten, 2023, vol. 296, issue 7, 2758-2779

Abstract: In this paper, we introduce a wide class of space‐fractional and time‐fractional semidiscrete Dirac operators of Lévy–Leblond type on the semidiscrete space‐time lattice hZn×[0,∞)$h{\mathbb {Z}}^n\times [0,\infty )$ (h>0$h>0$), resembling to fractional semidiscrete counterparts of the so‐called parabolic Dirac operators. The methods adopted here are fairly operational, relying mostly on the algebraic manipulations involving Clifford algebras, discrete Fourier analysis techniques as well as standard properties of the analytic fractional semidiscrete semigroup exp(−teiθ(−Δh)α)t≥0$\left\lbrace \exp (-te^{i\theta }(-\Delta _h)^{\alpha })\right\rbrace _{t\ge 0}$, carrying the parameter constraints 0

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100234

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:7:p:2758-2779

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:7:p:2758-2779