EconPapers    
Economics at your fingertips  
 

On the interpolation constants for variable Lebesgue spaces

Oleksiy Karlovych and Eugene Shargorodsky

Mathematische Nachrichten, 2023, vol. 296, issue 7, 2877-2902

Abstract: For θ∈(0,1)$\theta \in (0,1)$ and variable exponents p0(·),q0(·)$p_0(\cdot ),q_0(\cdot )$ and p1(·),q1(·)$p_1(\cdot ),q_1(\cdot )$ with values in [1, ∞], let the variable exponents pθ(·),qθ(·)$p_\theta (\cdot ),q_\theta (\cdot )$ be defined by 1/pθ(·):=(1−θ)/p0(·)+θ/p1(·),1/qθ(·):=(1−θ)/q0(·)+θ/q1(·).$$\begin{equation*} 1/p_\theta (\cdot ):=(1-\theta )/p_0(\cdot )+\theta /p_1(\cdot ), \quad 1/q_\theta (\cdot ):=(1-\theta )/q_0(\cdot )+\theta /q_1(\cdot ). \end{equation*}$$The Riesz–Thorin–type interpolation theorem for variable Lebesgue spaces says that if a linear operator T acts boundedly from the variable Lebesgue space Lpj(·)$L^{p_j(\cdot )}$ to the variable Lebesgue space Lqj(·)$L^{q_j(\cdot )}$ for j=0,1$j=0,1$, then ∥T∥Lpθ(·)→Lqθ(·)≤C∥T∥Lp0(·)→Lq0(·)1−θ∥T∥Lp1(·)→Lq1(·)θ,$$\begin{equation*} \Vert T\Vert _{L^{p_\theta (\cdot )}\rightarrow L^{q_\theta (\cdot )}} \le C \Vert T\Vert _{L^{p_0(\cdot )}\rightarrow L^{q_0(\cdot )}}^{1-\theta } \Vert T\Vert _{L^{p_1(\cdot )}\rightarrow L^{q_1(\cdot )}}^{\theta }, \end{equation*}$$where C is an interpolation constant independent of T. We consider two different modulars ϱmax(·)$\varrho ^{\max }(\cdot )$ and ϱsum(·)$\varrho ^{\rm sum}(\cdot )$ generating variable Lebesgue spaces and give upper estimates for the corresponding interpolation constants Cmax and Csum, which imply that Cmax≤2$C_{\rm max}\le 2$ and Csum≤4$C_{\rm sum}\le 4$, as well as, lead to sufficient conditions for Cmax=1$C_{\rm max}=1$ and Csum=1$C_{\rm sum}=1$. We also construct an example showing that, in many cases, our upper estimates are sharp and the interpolation constant is greater than one, even if one requires that pj(·)=qj(·)$p_j(\cdot )=q_j(\cdot )$, j=0,1$j=0,1$ are Lipschitz continuous and bounded away from one and infinity (in this case, ϱmax(·)=ϱsum(·)$\varrho ^{\rm max}(\cdot )=\varrho ^{\rm sum}(\cdot )$).

Date: 2023
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/mana.202100549

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:7:p:2877-2902

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X

Access Statistics for this article

Mathematische Nachrichten is currently edited by Robert Denk

More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:mathna:v:296:y:2023:i:7:p:2877-2902