On the interpolation constants for variable Lebesgue spaces
Oleksiy Karlovych and
Eugene Shargorodsky
Mathematische Nachrichten, 2023, vol. 296, issue 7, 2877-2902
Abstract:
For θ∈(0,1)$\theta \in (0,1)$ and variable exponents p0(·),q0(·)$p_0(\cdot ),q_0(\cdot )$ and p1(·),q1(·)$p_1(\cdot ),q_1(\cdot )$ with values in [1, ∞], let the variable exponents pθ(·),qθ(·)$p_\theta (\cdot ),q_\theta (\cdot )$ be defined by 1/pθ(·):=(1−θ)/p0(·)+θ/p1(·),1/qθ(·):=(1−θ)/q0(·)+θ/q1(·).$$\begin{equation*} 1/p_\theta (\cdot ):=(1-\theta )/p_0(\cdot )+\theta /p_1(\cdot ), \quad 1/q_\theta (\cdot ):=(1-\theta )/q_0(\cdot )+\theta /q_1(\cdot ). \end{equation*}$$The Riesz–Thorin–type interpolation theorem for variable Lebesgue spaces says that if a linear operator T acts boundedly from the variable Lebesgue space Lpj(·)$L^{p_j(\cdot )}$ to the variable Lebesgue space Lqj(·)$L^{q_j(\cdot )}$ for j=0,1$j=0,1$, then ∥T∥Lpθ(·)→Lqθ(·)≤C∥T∥Lp0(·)→Lq0(·)1−θ∥T∥Lp1(·)→Lq1(·)θ,$$\begin{equation*} \Vert T\Vert _{L^{p_\theta (\cdot )}\rightarrow L^{q_\theta (\cdot )}} \le C \Vert T\Vert _{L^{p_0(\cdot )}\rightarrow L^{q_0(\cdot )}}^{1-\theta } \Vert T\Vert _{L^{p_1(\cdot )}\rightarrow L^{q_1(\cdot )}}^{\theta }, \end{equation*}$$where C is an interpolation constant independent of T. We consider two different modulars ϱmax(·)$\varrho ^{\max }(\cdot )$ and ϱsum(·)$\varrho ^{\rm sum}(\cdot )$ generating variable Lebesgue spaces and give upper estimates for the corresponding interpolation constants Cmax and Csum, which imply that Cmax≤2$C_{\rm max}\le 2$ and Csum≤4$C_{\rm sum}\le 4$, as well as, lead to sufficient conditions for Cmax=1$C_{\rm max}=1$ and Csum=1$C_{\rm sum}=1$. We also construct an example showing that, in many cases, our upper estimates are sharp and the interpolation constant is greater than one, even if one requires that pj(·)=qj(·)$p_j(\cdot )=q_j(\cdot )$, j=0,1$j=0,1$ are Lipschitz continuous and bounded away from one and infinity (in this case, ϱmax(·)=ϱsum(·)$\varrho ^{\rm max}(\cdot )=\varrho ^{\rm sum}(\cdot )$).
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/mana.202100549
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:mathna:v:296:y:2023:i:7:p:2877-2902
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0025-584X
Access Statistics for this article
Mathematische Nachrichten is currently edited by Robert Denk
More articles in Mathematische Nachrichten from Wiley Blackwell
Bibliographic data for series maintained by Wiley Content Delivery ().